SOIL-BORNE DISEASES IN VEGETABLE CROPS

A practical guide to identification and control

2019

2019 Soil-Borne Diseases In Vegetable Crops

A practical guide to identification and control

First published June 2019 © Horticulture Innovation Australia

Authors

Dr Natalie Elias Applied Horticultural Research

Dr Len Tesoriero Crop Doc

Guide produced by Applied Horticultural Research (AHR) RM Consulting Group (RMCG)

Designed by Jihee Park Jihee Park Creative

Copyright protects the publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of Horticulture Innovation Australia Ltd.

Acknowledgments

This project was made possible by funding from Horticulture Innovation Australia Ltd using the vegetable research and development levy and matched funds from the Australian Government.

Thank you to the generous researchers, agronomists, extension officers and amateur photographers who provided photographs from their collections for this guide.

Special thanks to Rachel Lancaster, Environmental and Agricultural Testing Services (EATS), WA and Stuart Grigg, Ag-Hort Consulting, VIC for their review and feedback.

Hort VEGETABLE Innovation FUND This project has been funded by Hort Innovation using the vegetable research and development levy and funds from the Australian Government. For more information on the fund and strategic levy investment visit hortoculture.com.au

TABLE OF CONTENTS

Introduction				
How to use this guide				
BRASSICAS				
Beet cyst nematode	12	Fusarium wilt/Yellows	28	
Black leg	16	Root-knot nematode	32	
Clubroot	20	Sclerotinia rot (white mould)	36	
Damping off/wirestem	24	Verticillium wilt	40	
CAPSICUM, CHILLI AND EC	GGPLANT			
Bacterial wilt	46	Root-knot nematode	62	
Damping off	50	Sclerotinia (white mould)	66	
Phomopsis blight	54	Sclerotium rot	70	
Pythium root rot	58	Verticillium wilt	74	
CARROT, CELERY, PARSNIF	P AND PAF	RSLEY		
Black canker	80	Leaf curl/ celery anthracnose	108	
Black root rot	84	Root-knot nematode	112	
Carrot scab	88	Root-lesion nematode	116	
Cavity spot	92	Root rot complex	120	
Crater rot	96	Sclerotinia (white mould)	124	
Crown rot	100	Sclerotium rot	128	
Damping off	104			

DISCLAIMER

Horticulture Innovation Australia Limited (Hort Innovation), Applied Horticultural Research Ltd (AHR) and RM Consulting Group (RMCG) make no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this book produced under VG15010 *A* multi-foceted approach to soli-bone disease management. Reliance on any information provided by Hort Innovation, AHR or RMCG is entriely at your own risk. Hort Innovation, AHR or RMCG are not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way, including from any Hort Innovation, AHR, RMCG or other person's negligence or otherwise from your use or non-use of information from this book or from reliance on information contained in the material or that Hort Innovation or AHR provides to you by any other means..

GREEN BEANS AND PEAS							
Aphanomyces root rot	134	Pea wilt	154				
Ashy stem blight (charcoal rot)	138	Pythium stem rot	158				
Black root rot	142	Rhizoctonia root rot	162				
Black spot (ascochyta blight)	146	Sclerotinia rot (white mould)	166				
Fusarium root rot	150	Sclerotium rot	170				
Anthracnose (shot hole or ring spot)	176	Damping off	192				
Black root rot	180	Lettuce big-vein disease/Miraflori lettuce virus complex	196				
Bottom rot	184	Sclerotinia rot (white mould)	200				
Corky root rot	188	Root-knot nematode	204				
Charseal ret			226				
	210	Boot knot pomotodo	220				
	214	Coloration ret (white mould)	230				
	218	Scierolinia rot (while mould)	234				
Fusarium wiit	222	Scierotium rot	238				
SPINACH, SILVERBEET AND BEI	etrc	DOT					
Aphanomyces root rot/damping off	244	Damping off, root rot or vascular wilt	256				
Beet cyst nematode	248	Root-knot nematode	260				
Cercospora leaf spot	252						
SFRING ONIONS, LEEK AND GF		Diskusst	270				
	266		278				
Fusarium basal rot	270	Stem and bulb nematode	282				
Leaf blight	274	White rot	286				
SWEET CORN							
Boil smut	292	Fusarium cob rot	300				
Damping off	296	Head smut	304				

INTRODUCTION

Soil-borne diseases present an ongoing challenge to the Australian vegetable industry, with an estimated \$120 million in losses annually.

Soil-borne diseases may be caused by fungi, bacteria, water moulds, nematodes and viruses living in the soil. These pathogens are able to survive for long periods on plant debris, organic matter or sometimes as free-living organisms, i.e. not requiring a plant host. The ability to survive for long periods in the soil, and often having a wide host range, makes control of soil-borne diseases difficult.

There are many factors that influence how often and how seriously pathogens in the soil will impact on plant health. They include the plant genetics, environmental conditions, cultural practices and the types of other microbes present in the soil or root zone (see Figure 1).

Figure 1. Factors contributing to plant health and resilience to soil-borne diseases.

Some of these factors are more easily controlled than others and knowing how to best manage them to optimise plant health can be very powerful in the fight against soilborne diseases.

HOW TO USE THIS GUIDE

The book is divided into chapters based on vegetable crop families.

- How to identify the most common soil-borne diseases affecting vegetable crops in Australia and conditions which favour disease
- 2. Summary of the methods available for control

Details on where you will find this information are provided below

Here you will find options for disease control divided into sections based on when the strategies for control are best applied.

The fallow period refers to the time between crops when the field is typically bare. In vegetable production systems this period can be very short. Where possible, longer fallow periods can be useful in the fight against soil-borne disease and good management during this time is critical. Alternatively a cover crop or break crop (non-vegetable crop) may be grown to provide ground cover and improve soil health. If it does not act as a host to the disease, a cover crop can also be valuable in providing a break in the disease cycle and can help control soil-borne disease.

Planting preparation is the period immediately leading up to planting. Typically this is referring to the 4 to 6 week period pre-planting but this will vary depending on the crop rotation system.

Control of soil-borne diseases post-planting can be a challenge. While control options are often limited, some are presented here, as well as recommendations on where to go for the most current information.

BRASSICAS

Includes cabbages, cauliflower, broccoli, kale, mustards

Beet cyst nematode	Black leg (Phoma leaf spot)	Clubroot	Damping off/ Wirestem
Page 12	Page 16	Page 20	Page 24

Fusarium wilt (yellows)	Root-knot nematode	Sclerotinia rot	Verticillium wilt
Page 28	Page 32	Page 36	Page 40
The second second			

BRASSICAS BEET CYST NEMATODE Heterodera schachtii

WHAT SHOULD I LOOK FOR?

Stunted growth and yellowing of aboveground plant

DAFF Archive, Bugwood.org

Increase in fine "whisker-like" roots with small white spherical cysts *L. Tesoriero, Crop Doc Consulting*

HOST RANGE

Brassica crops and weeds, silverbeet, beetroot and rhubarb

 Not always effective as cysts can be difficult to penetrate. Check APVMA or Infopest website for registered products

• Use non-brassica crops e.g. biofumigant sorghum varieties

Add organic matter or amendments to boost beneficial microbes

WHAT SHOULD I LOOK FOR?

Leaf lesions may appear as (a) grey circular spots containing many small black dots or (b) white to brown spots with many tiny black dots in the centre L. Tesoriero, Crop Doc Consulting

Stem and stalk develop sunken brown to purple lesions which eventually turn black and split L. Tesoriero, NSW DPI

HOST RANGE

Crop and weed brassicas including cabbage, Chinese cabbage, kale, broccoli, cauliflower, canola mustards, radish, turnip and shepherd's purse

WHAT SHOULD I LOOK FOR?

Digging up wilted plants reveals knot-like swelling (galls) on the root system *S. Grigg, Ag-Hort Consulting*

Scattered areas of wilted plants may be seen across the field

S. Grigg, Ag-Hort Consulting

WHAT SHOULD I LOOK FOR?

Brassica seedlings showing symptoms of wilting and death caused by damping off. *B.Winter, Stuart Grigg Ag-Hort Consulting*

Stem discolouration and rot evident at stem base, in this case caused by *Rhizoctonia* spp. Stem eventually collapses leading to wilt and plant death L. Tesoriero, Crop Doc Consulting

HOST RANGE

Crop and weed brassicas including cabbage, Chinese cabbage, kale, broccoli, cauliflower, canola mustards, radish, turnip, shepherd's purse

BRASSICAS FUSARIUM WILT/YELLOWS Fusarium oxysporum f. sp. conglutinans

WHAT SHOULD I LOOK FOR?

Cutting open the stem reveals brown discolouration of the internal tissue *L. Tesoriero, Crop Doc Consulting*

Often lower leaves appear stunted, wilt and turn yellow more on one side of the plant. May be confused with water stress or nutrient deficiency L. Tesoriero, Crop Doc Consulting

HOST RANGE

Crop and weed brassicas including cabbage, Chinese cabbage, kale, broccoli, cauliflower, canola mustards, radish, turnip, shepherd's purse

BRASSICAS ROOT-KNOT NEMATODE

WARM-CLIMATE SPECIES: Meliodogyne incognita | Meloidogyne javanica | Meloidogyne arenaria

WHAT SHOULD I LOOK FOR?

Aboveground, scattered areas of stunted, yellow and wilted plants may be visible. Belowground, infection with root-knot nematode results in swelling and galls on the root. S. Nelson FLICKR

COOL-CLIMATE SPECIES: Meloidogyne hapla | Meloidogyne fallax

HOST RANGE

Very wide with over 2000 plant species acting as hosts to root-knot nematode

 Maximise growth in cool conditions when nematode activity is low. Harvest early in high risk situations

SOIL TEST

Conduct a pre-sowing soil test to help predict level of risk

 If numbers are high consider fallow or non-host break crop

• Use non-brassicas e.g. biofumigant sorghum varieties

Conduct a pre-sowing soil test to help predict level of risk

NO RESIDUE AT PLANTING

Ensure no plant residues from host crops at planting

BRASSICAS SCLEROTINIA ROT (WHITE MOULD) Sclerotinia sclerotiorum | S. minor

WHAT SHOULD I LOOK FOR?

Symptoms begin as water-soaked lesions which eventually rot and collapse R. Lancaster, DPIRD

Characteristic white fluffy growth with black fruiting bodies (sclerotia) as seen on (a) a cauliflower head and (b) kale head. *S. sclerotiorum* produce sclerotia up to 25mm long and *S. minor* produces much smaller sclerotia (up to 3mm long) *a: R. Lancaster, DPIRD; b: G. Holmes, California Polytechnic State University, Bugwood.org*

HOW DO I CONTROL IT?

HOST RANGE

Very wide (more than 400 different plant species). Infects most brassica vegetable crops and many weeds e.g. shepherd's purse, thistles, mustard and pigweed

 Consult APVMA or InfoPest website for current registered products • Use non-brassicas e.g. biofumigant sorghum varieties

BRASSICAS VERTICILLIUM WILT Verticillium dahliae | V. longisporum

WHAT SHOULD I LOOK FOR?

Pale green to yellow discolouration between veins. Eventually leaf will wilt and die, often only on one side of the plant. Discoloured vascular tissue can also be seen at the base of the plant. L. Tesoriero, Crop Doc Consulting

Cutting open the stem reveals brown flecks of discoloured vascular tissue, often in a V-shape Ohio State University Extension

HOW DO I CONTROL IT?

HOST RANGE

Brassica crops and weeds, tomatoes and olives

CAPSICUM, CHILLI AND EGGPLANT

Bacterial wilt	Damping off	Phomopsis blight /Fruit rot	Pythium root rot
Page 46	Page 50	Page 54	Page 58

Root-knot nematode	Sclerotinia (white mould)	Sclerotium rot	Verticillium wilt
Page 62	Page 66	Page 70	Page 74

WHAT SHOULD I LOOK FOR?

Leaf yellowing, wilting and death in warm conditions within days of infection *M. Furlong, University of Queensland*

Dissecting the lower stem reveals brown discolouration of internal tissue Clemson University - USDA Cooperative Extension Slide Series, Bugwood.org

To help identify bacterial wilt, cut the stem of an infected plant and place in a clear container with water. Look for a white milky liquid flowing from the stem

HOW DO I CONTROL IT?

HOST RANGE

Wide host range including most solanceae vegetable crops

 Avoid planting during high temperatures

WHAT SHOULD I LOOK FOR?

Infection may cause seed rot, resulting in large bare patches where the seed has failed to germinate

Penn State Department of Plant Pathology & Environmental Microbiology Archives, Penn State University, Bugwood.org

Seedlings that do emerge may have yellow to light brown discolouration around the stem at ground level. As the disease progresses stems eventually collapse leading to wilting and death *G. Holmes, California Polytechnic State University, Bugwood.org*

HOW DO I CONTROL IT?

HOST RANGE

Wide - potatoes, eggplant, chilli, capsicum, brassicas, carrots, cucurbits, lettuce etc.

CAPSICUM, CHILLI AND EGGPLANT PHOMOPSIS BLIGHT/FRUIT ROT Phomoposis vexans

WHAT SHOULD I LOOK FOR?

Small grey to light brown lesions with light coloured centres that expand, covering large areas on leaf, stem or fruit. Leaves eventually wilt and drop. Stems develop large sunken cracked cankers *Yuan-Min Shen, Taichung District Agricultural Research and Extension Station, Bugwood.org*

Fruit lesions may be (a) sunken and soft with tiny black dots (fruiting bodies) around the margin or in rings and (b) in dry conditions fruit may shrivel (a) D. Langston, University of Georgia, Bugwood.org (b) B.Olson, Oklahoma State University, Bugwood.org

WHAT SHOULD I LOOK FOR?

HOW DO I CONTROL IT?

HOST RANGE Eggplants

CAPSICUM, CHILLI AND EGGPLANT PYTHIUM ROOT ROT Pythium aphanidermatum

WHAT SHOULD I LOOK FOR?

Aboveground, plants will appear wilted with yellowing of leaves that will eventually die *L.Tesoriero, Crop Doc Consulting*

Sunken dark lesions may occur on lower stems or a rot of the roots may develop *Penn State University, Bugwood.org*

HOW DO I CONTROL IT?

HOST RANGE

• Consult APVMA or InfoPest website for current registered products

CAPSICUM, CHILLI AND EGGPLANT ROOT-KNOT NEMATODE

WARM CLIMATE SPECIES: Meloidogyne incognita | Meloidogyne javanica | Meloidogyne arenaria

WHAT SHOULD I LOOK FOR?

Aboveground plants may appear chlorotic and stunted *G. Holmes, California Polytechnic State University*

Belowground roots develop characteristic swelling and galls

S. Nelson FLICKR

HOST RANGE

Very wide with over 2000 plant species acting as hosts to root-knot nematode

 Consult APVMA or InfoPest website for current registered products

• Maximise growth in cool conditions when nematode activity is low. Harvest early in high risk situations

 e.g. PREDICTA® B testing service. If numbers are high consider fallow or non-host break crop

CAPSICUM, CHILLI AND EGGPLANT SCLEROTINIA ROT (WHITE MOULD) Sclerotinia sclerotiorum | Sclerotinia minor

WHAT SHOULD I LOOK FOR?

Symptoms begin as water-soaked lesions on the stem or fruit, which eventually rot and collapse *C. Ocamb, PNW Handbooks*

As the disease progresses, characteristic white fluffy growth develops followed by black fruiting bodies (sclerotia). *S. sclerotiorum* can produce sclerotia up to 25mm long and *S. minor* produce much smaller sclerotia (up to 3mm long) *C. Ocamb, PNW Handbooks*

HOW DO I CONTROL IT?

HOST RANGE

Very wide (more than 400 different plant species) including most vegetables and weeds in the pepper family

 Consult APVMA or InfoPest website for current registered products

CAPSICUM, CHILLI AND EGGPLANT SCLEROTIUM ROT Sclerotium rolfsii

WHAT SHOULD I LOOK FOR?

Begins as a watery rot on stem or fruit that eventually leads to collapse of infected area. Infection of the lower stem can cause plant wilting and potential death *G. Holmes, California Polytechnic State University, Bugwood.org*

Characteristic white "ropey" fungal growth develops along with light brown survival structures (sclerotia)

G. Holmes, California Polytechnic State University, Bugwood.org

Survival structures may develop on the infected tissue or soil surface and resemble mustard seeds

P.Bachi, University of Kentucky Research and Education Center, Bugwood.org

HOST RANGE

Very wide (more than 500 different plant species) including capsicum and chilli

CAPSICUM, CHILLI AND EGGPLANT VERTICILLIUM WILT Verticillium dahliae

WHAT SHOULD I LOOK FOR?

Symptoms begin as pale green blotches between veins and leaf margins. Eventually leaf will wilt, turn brown and die as the disease moves up the plant; often only on one side of the plant *A. Vieira, Ontario Crop IPM, OMAFRA*

Stunting of plants may also occur, as shown here with verticillium infected peppers on the right compared to healthy plants on the left

A. Vieira, Ontario Crop IPM, OMAFRA

Cutting open the stem reveals brown flecks of discoloured vascular tissue, often in a V-shape A. Vieira, Ontario Crop IPM, OMAFRA

HOST RANGE

Eggplant, tomato, olive trees, brassica crops and weeds

CARROT, CELERY, PARSNIP AND PARSLEY

Crown rot	Damping off	Leaf curl/ celery anthracnose	Root-knot nematode
Page 100	Page 104	Page 108	Page 112
		No.	
Root-lesion nematode	Root rot complex	Sclerotinia rot (white mould)	Sclerotium rot
Root-lesion nematode Page 116	Root rot complex Page 120	Sclerotinia rot (white mould) Page 124	Sclerotium rot Page 128

WHAT SHOULD I LOOK FOR?

Orange-brown lesions often with a pale green-yellow halo form are seen on the leaves. *M. Kowalik-Kepler, APS*

Red-brown to black cankers develop typically on the crown or shoulder of the root. Initially on the surface, but may decay further with secondary infection by other pathogens. *L. Tesoriero, NSW DPI*

FALLOW/COVER CROP Select non-host Stop movement of contaminated rotation or cover soil, water, plants crops and equipment Minimum 12 month break between parsnip crops PLANTING PREPARATION **NO RESIDUE** AT PLANTING

FARM

HYGIENE

Ensure no plant residues from host crops at planting

CROP ROTATION

date to reduce infection risk

 Avoid an autumn planting/spring harvest which can favour infection

HOST RANGE

Parsnip, carrot

CARROT, CELERY, PARSNIP AND PARSLEY BLACK ROOT ROT/BLACK MOULD Thielaviopsis basicola (Chalara elegans) or Chalaropsis thielavioides

WHAT SHOULD I LOOK FOR?

Dark grey to black fungal growth can develop around leaf base in the field. Blackened areas develop on roots, mostly post harvest when spores rapidly spread on wet carrots that are not stored below 5° CL du Toit, WSU

Blackened areas have a sooty appearance, do not have distinct margins and do not move beyond the skin of the carrot root DPIRD

HOST RANGE

Wide host range including beans, peas, cotton, lettuce, lucerne, lupin and soybean

HARVEST

CARROT, CELERY, PARSNIP AND PARSLEY CARROT SCAB Streptomyces scabiei

WHAT SHOULD I LOOK FOR?

No visible symptoms on leaves. Dry corky lesions on root that may be raised or sunken; usually develop where lateral roots emerge from tap toot Bayer Crop Science, UK

Multiple lesions may merge to form large scabby horizontal bands

Bayer Crop Science, UK

HOST RANGE

Carrot, potato, peanut, beetroot, swede, parsnip, radish

 Preferably rotate with legumes. Avoid fields that have previously grown potatoes.

• Use acidifying fertilisers e.g. ammonium sulphate to help lower pH CARROT, CELERY, PARSNIP AND PARSLEY CAVITY SPOT Pythium sulcatum or P. violae

WHAT SHOULD I LOOK FOR?

Pin-head sized dots that progress to small (10mm) sunken oval lesions, often with a yellow halo, anywhere along the root surface. *L. du Toit, WSU*

Symptoms can begin one month before harvest and develop rapidly. Damage can make fresh carrots unmarketable. *L. du Toit, WSU*

HOST RANGE

P. sulcatum - Carrot, parsnips, celery, parsley

P. violae - Carrot, parsnips, celery, parsley, broccoli, wheat, lucerne

or amendments to boost beneficial microbes

CHEMICAL

FUMIGATION

Always use with

care and as per

label

 Consult APVMA or InfoPest website for current registered products

Adjust planting/harvest date to reduce infection risk

 Avoid summer or autumn harvest. Monitor 1 month prior to expected harvest date to avoid over maturity

WHAT SHOULD I LOOK FOR?

Horizontal dark brown bands develop mostly on the crown and upper root *L. Tesoriero, NSW DPI*

Rotted pits develop under the bands, joining to form craters as the disease progresses. White cottony growth may develop in high humidity Plant Disease Clinic, University of Minnesota

HOST RANGE

biofumigant crop

CARROT, CELERY, PARSNIP AND PARSLEY CROWN ROT Fusarium spp. | *Rhizoctonia* spp.

WHAT SHOULD I LOOK FOR?

Crown rot in carrots caused by *Rhizoctonia* spp. causes black lesions at the soil line that spreads to the top of the root. This often causes breaking off of leaves at harvest *L. Tesoriero, Crop Doc Consulting*

Crown rot symptoms may also be caused by *Fusarium* spp. as shown in mature carrots *H. Pung, Peracto*

Crown rot in parsley caused by *Fusarium* spp. causes (a) soft brown rot where the root meets the soil and (b) discolouration of the internal root tissue *L. Tesoriero, Crop Doc Consulting*

HOST RANGE

Carrot, parsnips, celery

 Consult APVMA or InfoPest website for current registered products

CARROT, CELERY, PARSNIP AND PARSLEY DAMPING OFF *Rhizoctonia or Pythium* spp.

WHAT SHOULD I LOOK FOR?

Seedling emergence may be poor leading to bare patches. Seedlings may emerge but have stunted growth, as shown in parsley L. Tesoriero, Crop Doc Consulting

Seedlings may also develop red-brown lesions at the soil junction, resulting in wilt and eventual death, as shown in carrots B. Conde, NT DPIF

HOST RANGE

Carrot, parsnips, celery, parsley

• Consult APVMA or InfoPest website for current registered products

Control insect pests that spread spores

• Sciarid flies can spread disease

CARROT, CELERY, PARSNIP AND PARSLEY LEAF CURL/CELERY ANTHRACNOSE Colletotrichum acutatum | C. orbiculare

WHAT SHOULD I LOOK FOR?

Stunting of plants resulting in small cupped leaves. Older leaves may curl downward and become distorted. Brown lesions may develop on leaf margins. Lesions may become brittle and crack. L. Tesoriero, Crop Doc Consulting

Stalks may become twisted with red to light-brown lesions, sometimes in stripes. L. Tesoriero, Crop Doc Consulting

HOST RANGE

Wide host range including celery

CARROT, CELERY, PARSNIP AND PARSLEY ROOT-KNOT NEMATODE WARM CLIMATE SPECIES: Meloidogyne incognita | Meloidogyne javanica | Meloidogyne arenaria

WHAT SHOULD I LOOK FOR?

Aboveground scattered areas of stunted, yellow and wilted plants may be visible. *B. Hammeraas, NIBIO, Bugwood.org*

Belowground infection by *Meloidogyne* spp. can result in swollen galls on carrot roots. *S. Nelson FLICKR*

Infection by *Meloidogyne halpa* can cause forking and severe distortion of carrot roots *W. Peraza-Padilla, National University Cosa Rica, Bugwood.org*

FALLOW/COVER CROP HOST-FREE ZONE CROP ROTATION FARM HYGIENE Stop movement **Control volunteer** Select non-host of contaminated host plants and rotation or cover soil, water, plants weeds crops and equipment PLANTING PREPARATION CROP SELECTION SOIL IRRIGATION **SOLARISATION** MANAGEMENT Cover soil with a Monitor crop and Choose a tarp and kill soil to optimize resistant/less harmful pathogens amount and timing susceptible cultivar

HOST RANGE

Very wide, with over 2000 plant species acting as hosts to root-knot nematode

activity is low. Harvest early in high risk situations

drench nematicide at planting Consult APVMA or InfoPest website for

current registered products

CARROT, CELERY, PARSNIP AND PARSLEY ROOT-LESION NEMATODE Pratylenchus penetrans

WHAT SHOULD I LOOK FOR?

Aboveground scattered areas of stunted, yellow and wilted plants may be visible *B. Hammeraas, NIBIO, Bugwood.org*

Belowground infection by *Pratylenchus penetrans* can cause forking, distortion and prolific formation of lateral roots S. Collins, DPIRD

FALLOW/COVER CROP HOST-FREE ZONE FARM CROP HYGIENE ROTATION Stop movement **Control volunteer** Select non-host of contaminated host plants and rotation or cover soil, water, plants weeds crops and equipment PLANTING PREPARATION CROP SELECTION SOIL **IRRIGATION SOLARISATION** MANAGEMENT Cover soil with a Monitor crop and Choose a tarp and kill soil to optimize resistant/less harmful pathogens amount and timing susceptible cultivar

HOST RANGE

Wide, infecting over 400 plant species inlcuding carrot, potatoes and fruit trees

 Consult APVMA or InfoPest website for current registered products

Ensure no plant residues from host crops at planting

ADJUST DATE

Adjust planting/harvest date to reduce infection risk

 Select planting date to maximise growth in cool conditions when nematode activity is reduced. Bring forward harvest to minimise damage in high risk situations

 e.g. PREDICTA® B testing service. If numbers are high consider fallow or non-host break crop

CARROT, CELERY, PARSNIP AND PARSLEY ROOT ROT COMPLEX Phytophthora/Pythium spp.

WHAT SHOULD I LOOK FOR?

Aboveground, yellowing and wilting of leaves followed by plant collapse and death, as shown in parsley L. Tesoriero, Crop Doc Consulting

Belowground, reduction in side roots predominantly by *Pythium* spp,as shown in infected parsley (right) compared to healthy plant (left). Infection with *Phytophthora* spp. leaves roots intact but often causes browning *L. Tesoriero, Crop Doc Consulting*

Roots may also develop a brown spongy rot as shown in carrots *L. Tesoriero, Crop Doc Consulting*

HOST RANGE

Carrot, parsnip, celery, parsley

 Consult APVMA or InfoPest website for current registered products

CARROT, CELERY, PARSNIP AND PARSLEY SCLEROTINIA ROT (WHITE MOULD) Sclerotinia sclerotiorum | S. minor

WHAT SHOULD I LOOK FOR?

At base of stem fluffy white fungal growth is visible, leading to stem rot and collapse *H.F. Schwartz. Bugwood.org*

Survival structures (*sclerotia*) form later on and can be up to 25mm long in S. *sclerotiorum* and much smaller (up to 3mm long) in S. *minor* C. Balbalian, Mississippi State University, Bugwood.org

HOST RANGE

Very wide (more than 400 different plant species). Infects most vegetable crops

CARROT, CELERY, PARSNIP AND PARSLEY SCLEROTIUM ROT Sclerotium rolfsii

WHAT SHOULD I LOOK FOR?

Watery rot, leading to stem collapse. Characteristic white ropey fungal growth seen at the soil line with light brown survival structures (sclerotia) resembling mustard seeds *D. Langston, University of Georgia, Bugwood.org*

HOST RANGE

Very wide (more than 400 different plant species). Infects most vegetable crops including members of the bean, brassica and pumpkin families.

GREEN BEANS AND PEAS

Aphanomyces root rot	Ashy stem blight (charcoal rot)		Black root rot		Black spot	
Page 134	ge 134 Page		138 Page		Page 146	
				No.		
Fusa roo	Fusarium root rot		Pea wilt		Pythium stem rot	
Page	Page 150		Page 154		Page 158	
	Rhizoctonia root rot		Sclerotinia rot (white mould)		Sclerotium rot	
Rhizo roo						
Page	Page 162		Page 166		Page 170	
	E and					

GREEN BEANS AND PEAS APHANOMYCES ROOT ROT Aphanomyces euteiches

WHAT SHOULD I LOOK FOR?

Initial honey-brown discolouration of root and area above the seed up to the soil line as shown in plants on right hand side, compared to healthy plants on the left. Nodulation on roots may also be poor. Roots become darker as disease progresses and eventually die *L. Porter, ARS USDA*

Aboveground yellowing will occur starting at the bottom leaves, followed by wilting and death

HOST RANGE

Range of legume crops and weed species including peas, beans, clovers and medics

IMPROVE

SOIL HEALTH

or amendments to

boost beneficial

microbes

Always use with care and as per label

 Consult APVMA or InfoPest website for current registered products

 Avoid late-maturing varieties especially in paddocks with history of Aphanomyces root rot

GREEN BEANS AND PEAS ASHY STEM BLIGHT (CHARCOAL ROT) Macrophomina phaseolina

WHAT SHOULD I LOOK FOR?

Sunken lesions develop on the stem, as shown here in seedlings. Lesions have sharp margins and may contain concentric rings *H. Schwartz, Colorado State University, Bugwood.org*

As the disease progresses, dry rot of the stem and pale, ash-coloured "dust" develop *H. Schwartz, Colorado State University, Bugwood.org*

Small black survival structures (*microsclerotia*) develop in dead tissue P. Bachi, University of Kentucky Research and Education Center, Bugwood.org

HOST RANGE

Very wide, host range infecting over 500 plant species including members of the pumpkin, bean, brassica and pepper families.

WHAT SHOULD I LOOK FOR?

Initially long red lesions appear on the root which eventually turn black *Virginia Tech Learning Resources Center*

Tap root may become stunted, aboveground plant may also become stunted, wilt and possibly die N. Cattlin, Alamy Stock Photo

HOST RANGE

Wide host range, including beans, peas, cotton, lettuces, lucerne, lupin and soybean

GREEN BEANS AND PEAS

BLACK SPOT (ASCOCHYTA BLIGHT)

Didymella pinodes often in a disease complex with Phoma medicaginis var. pinodella,

WHAT SHOULD I LOOK FOR?

Irregular dark brown to black spots that develop into large purplish-black lesions on stems,
leaves and pods.M. Wunsch, North Dakota State University

Concentric rings and black survival structures (pycnidia) can often be seen in the middle of the lesion. *M. Wunsch, North Dakota State University*

FALLOW/COVER CROP FARM **HOST-FREE** CROP **HYGIENE** ZONE ROTATION **Control volunteer** Select non-host Stop movement of contaminated host plants and rotation or cover soil, water, plants weeds crops and equipment Minimum 3 year break and 500m from previous host crops PLANTING PREPARATION **NO RESIDUE USE CLEAN ADJUST DATE** SEED OR AT Adjust PLANTING SEEDLINGS planting/harvest Source seed/ date to reduce Ensure no plant residues from host seedlings from a infection risk certified reputable crops at planting source • Avoid early planting at high seeding rates which increases exposure

HOST RANGE

Most severe on peas, but also infects lentils, alfalfa, faba beans, clover and vetch

 Consult APVMA or InfoPest website for current registered products

GREEN BEANS AND PEAS FUSARIUM ROOT ROT Fusarium solani f. sp. phaseoli

WHAT SHOULD I LOOK FOR?

Aboveground plants may initially appear yellow, stunted and wilted and eventually may die *H. Schwartz, Colorado State University, Bugwood.org*

Belowground lower root may die off and secondary roots may form above the diseased area

H. Schwartz, Colorado State University, Bugwood.org

Cutting the stem reveals drying out and reddening of the taproot *H. Schwartz, Colorado State University, Bugwood.org*

HOST RANGE

Green beans

Always use with care and as per label

 Consult APVMA or InfoPest website for current registered products

WHAT SHOULD I LOOK FOR?

Aboveground yellowing of leaves, begins at the base of the plants and progresses upwards. Stunting of plants is also common. *L. Porter, ARS-USDA*

Belowground brown to black lesions form around seed and root tissue that start small and then grow together to form large lesions. *L. Porter, ARS-USDA.*

Rot may only be confined to the outer layers of the root and cutting off the outer sheath reveals healthy inner tissue, as shown in the two outer plants. *L. Porter, ARS-USDA.*

HOST RANGE

Peas

GREEN BEANS AND PEAS PYTHIUM STEM ROT Pythium spp.

WHAT SHOULD I LOOK FOR?

Brown discolouration and soft rot of lower plant stem H. Schwartz, Colorado State University, Bugwood.org

Watery rot and white fluffy growth may also develop on pods post-harvest. Unlike Sclerotinia, no black fruiting with survival bodies (sclerotia) will form *B. Olson, Oklahoma State University, Bugwood.org*

HOST RANGE

Very wide host range, including all legumes and most vegetable crops

• Consult APVMA or InfoPest website for current registered products

GREEN BEANS AND PEAS RHIZOCTONIA ROOT ROT Rhizoctonia solani

WHAT SHOULD I LOOK FOR?

Infected seedlings may appear stunted and sunken; red lesions on root and lower stem are visible. In some cases new roots form above the diseased area, and the plant can continue to grow satisfactorily. Infection in older plants may occur

(a) E. Sikora, Auburn University, Bugwood.org. (b) H. Schwartz, Colorado State University, Bugwood.org

Aboveground yellowing of leaves begins at the base of the plants and progresses upwards. Stunting of plants is also common *L. Porter, ARS-USDA*

HOST RANGE

Very wide host range, including all legumes and most vegetable crops

Always use with care and as per label

 Consult APVMA or InfoPest website for current registered products

Add organic matter or amendments to boost beneficial microbes

 Consult APVMA or InfoPest website for current registered products

GREEN BEANS AND PEAS SCLEROTINIA ROT (WHITE MOULD) Sclerotinia sclerotiorum | S. minor

WHAT SHOULD I LOOK FOR?

Symptoms begin as water-soaked lesions which eventually rot and collapse. As the disease progresses, characteristic white fluffy growth develops followed by black survival structures (sclerotia). *N. Cattlin, Alamy Stock Photo*

Survival structures (sclerotia) can also develop on (a) stems and (b) can be up to 25mm long in *S. sclerotiorum* and much smaller (up to 3mm long) in *S. minor* (a) NY State IPM Program, Bugwood.org (b) C. Balbalian, Mississippi State University, Bugwood.org

HOST RANGE

Very wide (more than 400 different plant species), including most vegetable crops

 Consult APVMA or InfoPest website for current registered products

 Consult APVMA or InfoPest website for current registered products

GREEN BEANS AND PEAS SCLEROTIUM ROT Sclerotium rolfsii

WHAT SHOULD I LOOK FOR?

Watery rot that eventually leads to collapse of infected area. Characteristic white "ropey" fungal growth develops along with light brown survival structures (sclerotia) Bridget Lassiter, NCDA & CS, Bugwood.org

Survival structures may develop on the infected tissue or soil surface resembling mustard seeds Clemson University, Bugwood.org

HOST RANGE

Very wide (more than 500 different plant species), including most vegetable crops

 Consult APVMA or InfoPest website for current registered products

LETTUCE, ENDIVE AND ARTICHOKE

Anthracnose (shot hole or ring spot)	Black root rot	Bottom rot	Corky root rot
Page 176	Page 180	Page 184	Page 188

Damping off	Lettuce big-vein disease	Sclerotinia rot (white mould)	Root-knot nematode
Page 192	Page 196	Page 200	Page 204

LETTUCE, ENDIVE AND ARTICHOKE ANTHRACNOSE (SHOT HOLE/RING SPOT) Microdochium panattonianum

WHAT SHOULD I LOOK FOR?

Begins as small water-soaked brown lesions

M. Titley, AHR

Eventually centre of the lesion decays and falls out giving "shot hole" appearance *M. Titley, AHR*

HOST RANGE

Lettuce, prickly lettuce and endive

LETTUCE, ENDIVE AND ARTICHOKE BLACK ROOT ROT Thielaviopsis basicola

WHAT SHOULD I LOOK FOR?

Aboveground symptoms will appear in small scattered patches. Depending on the timing and severity of infection, plant may appear small and stunted but otherwise healthy. In more severe cases lower leaves will turn yellow or brown *S. Koike, TriCal Diagnostics*

Belowground the main tap root may be severely stunted (left) compared to the root system of a healthy lettuce plant (right). Diseased roots also develop dark brown to black lesions, particularly on the fine feeder roots S. Koike, TriCal Diagnostics

HOST RANGE

Wide host range, including beans, peas, cotton, lettuce, lucerne, lupin and soybean

LETTUCE, ENDIVE AND ARTICHOKE BOTTOM ROT *Rhizoctonia* spp.

WHAT SHOULD I LOOK FOR?

Starts as brown spots on underside of leaf midrib and develops to rot on midrib leaf blade *Gerald Holmes, California Polytechnic State University, Bugwood.org*

Heads can be slimy brown to dark brown/black as they collapse. Brown mycelium can grow over lesion with small brown sclerotia. Brown rot of root may also be seen *G. Holmes, California Polytechnic State University, Bugwood.org*

HOST RANGE

Lettuce, endive

LETTUCE, ENDIVE AND ARTICHOKE CORKY ROOT ROT Sphingomonas suberifaciens

WHAT SHOULD I LOOK FOR?

Aboveground plants appear stunted and wilted, as seen in infected lettuce on the right, compared to a healthy lettuce on the left. Belowground symptoms begin as yellow banding on the root which turns brown. *B. Mou, ARS-USDA*

Eventually roots become swollen, cracked, rough and stop functioning. Side roots are reduced and become brittle, as shown in infected root (right) compared to healthy roots from a corky root resistant variety (left) *C. Ochoa & R. Michelmore, University of California, Davis*

HOST RANGE

Lettuce, prickly lettuce, sow thistle, endive

WHAT SHOULD I LOOK FOR?

Seeds may not germinate, or plants may rot soon after emergence, leading to large bare patches. Plants that do emerge may be stunted. *N. Cattlin, Alamy Stock Photo*

Seedlings may have yellow to light brown discolouration on stem at ground level. As the disease progresses stem collapses leading to wilting and death. *E. Tubb, AHR*

HOST RANGE

Lettuce, endive

LETTUCE, ENDIVE AND ARTICHOKE LETTUCE BIG-VEIN DISEASE

Mirafiori lettuce big-vein virus transmitted by fungal vector Olpidium virulentus (oomycete)

WHAT SHOULD I LOOK FOR?

Abnormally large clear veins

S. Grigg, Ag-Hort Consulting

Leaves are often puckered or mottled and may appear thickened S. Grigg, Ag-Hort Consulting

Head size may be reduced or in some cases no head will develop S. Grigg, Ag-Hort Consulting

HOW DOES IT SPREAD?

Transmitted by fungus Olpidium virulentus

SURVIVAL TIME WITHOUT HOST

More than 10 years

HOST RANGE

Lettuce and weed species such as sow thistle and chickweed may act as hosts

LETTUCE, ENDIVE AND ARTICHOKE SCLEROTINIA ROT (WHITE MOULD) Sclerotinia sclerotiorum | S. minor

WHAT SHOULD I LOOK FOR?

Symptoms begin as (a) watery soft lesions that (b) develops into fluffy white growth sometimes containing black survival structures (sclerotia). Lower leaves and stems are most affected. L. Tesoriero, Crop Doc Consulting

Brown, soft decay eventually destroys the tissue around crown. Near maturity the entire plant will wilt and collapse. B. Shew, North Carolina State University, Bugwood.org

HOST RANGE

Very wide (more than 400 different plant species). Infects most vegetable crops including lettuce, endive and chicory

Add organic matter or amendments to boost beneficial microbes

LETTUCE,

LETTUCE, ENDIVE AND ARTICHOKE ROOT-KNOT NEMATODE WARM-CLIMATE SPECIES: Meloidogyne incognita | Meloidogyne javanica | Meloidogyne arenaria

WHAT SHOULD I LOOK FOR?

Aboveground plant may appear chlorotic and stunted (left) compared to a healthy lettuce (right) Ontario Ministry of Agriculture and Food (OMAFRA)

COOL-CLIMATE SPECIES: Meloidogyne hapla | Meloidogyne fallax

Belowground roots develop characteristic swelling and galls.

D. Blancard, INRA

HOST RANGE

Very wide with over 2000 plant species acting as hosts to root-knot nematode

test to help predict

level of risk

Ensure no plant

residues from host crops at planting

 e.g. PREDICTA® B testing service. If numbers are high consider fallow or non-host break crop

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER

Charcoal rot	Damping off	Fusarium foot rot	Fusarium wilt
Page 210	Page 214	Page 218	Page 222

Gummy stem blight	Root-knot nematode	Sclerotinia rot	Sclerotium rot
Page 226	Page 230	Page 234	Page 238

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER CHARCOAL ROT Macrophomina phaseolina

WHAT SHOULD I LOOK FOR?

Seedlings with early infection show water-soaked lesions at soil line that may choke and kill the plant *H. Schwartz, Colorado State University, Bugwood.org*

As the disease progresses amber coloured ooze, similar to gummy stem blight, may be released. Lesions eventually dry out and many survival structures (microsclerotia) may be seen in the dead tissue *P. Bachi, University of Kentucky Research and Education Center, Bugwood.org*

Infected fruit develop large soft grey to black sunken lesions, shown here in an infected cucumber

C. Averre North Carolina State University, Bugwood.org

HOST RANGE

Very wide host range infecting over 500 plant species including most members of the pumpkin, bean, brassica and pepper vegetable families

care and as per label

 Consult APVMA or InfoPest website for current registered products

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER DAMPING OFF Rhizoctonia spp. | Pythium spp. | Phytopthora spp. | Fusarium spp.

WHAT SHOULD I LOOK FOR?

Where direct seeding is used plants may not emerge, resulting in bare patches. Infected seedlings that do emerge develop water soaked dark brown lesions at base of stem, shown here in cucurbit seedlings infected with (a) *Rhizoctonia* spp. and (b) *Pythium* spp. *G. Holmes, California Polytechnic State University, Bugwood.org*

Plants experience stunting, wilting and eventual death *G. Holmes, California Polytechnic State University, Bugwood.org*

HOST RANGE

Very wide, including all vegetables in the pumpkin (cucurbit) family.

 Consult APVMA or InfoPest website for current registered products

label

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER FUSARIUM FOOT ROT Fusarium solani f.sp. cucurbitae

WHAT SHOULD I LOOK FOR?

Light brown water-soaked rot on crown and upper root which eventually chokes plant. Leaves wilt followed by plant death. Crown often breaks off and secondary pathogens invade decaying plant tissue sometimes producing a bad odour. *M. Lloyd, University of California, Co-operative Extension*

Pink to white fungal mycelium is often found on the soil surface beside the lesion and
darkened soil may also be evidentM. Lloyd, University of California, Co-operative Extension

HOST RANGE Zucchini, pumpkin

 Consult APVMA or InfoPest website for current registered products

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER FUSARIUM WILT Fusarium oxysporum f. sp. cucumerinum (cucumber)

WHAT SHOULD I LOOK FOR?

Discolouration of stem at ground level may be seen, in (a) younger seedlings and (b) more mature plants with pale pink fungal growth evident at the base (a) *C. F. Hong, University of Georgia, Bugwood.org (b) L. Tesoriero, Crop Doc Consulting*

Lower leaves on young infected plants will be stunted, wilted and turn yellow (often more on one side). Cutting stem reveals brown discolouration of the internal tissue *Ontario Crop IPM, OMAFRA*

HOST RANGE

Cucumber

• Consult APVMA or InfoPest website for current registered products

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER GUMMY STEM BLIGHT Stagonosporopsis cucurbitacearum

WHAT SHOULD I LOOK FOR?

Symptoms begin as water-soaked lesions and with age can dry out, form rings and produce small black survival structures (pycnidia) *B. Watt, University of Maine*

Small black survival structures (pycnidia) may be seen on older leaf or stem lesions *L. Tesoriero, Crop Doc Consulting*

WHAT SHOULD I LOOK FOR?

 Minimum 2 years break from host

With age lesions may ooze a characteristic redbrown gummy substance a) R.Melanson, Mississippi State University Extension, Bugwood.org b) G.Holmes, California Polytechnic State University, Bugwood.org

In cucumbers, water soaked lesions with brown canker may appear (a) on the skin and (b) internally brown streaks extend from the flower end of the fruit. *L. Tesoriero, NSW DPI*

HOST RANGE

Cucumber, gourd, pumpkin, squash, zucchini

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER ROOT-KNOT NEMATODE

WARM-CLIMATE SPECIES: Meloidogyne incognita | Meloidogyne hapla | Meloidogyne javanica

WHAT SHOULD I LOOK FOR?

Aboveground symptoms showing chlorotic stunted squash plants resulting from root-knot nematode infection *G. Holmes, California Polytechnic State University*

Belowground roots develop characteristic swelling and galls R. Burns, Texas A&M Agrilife, FLICKR

FALLOW/COVER CROP HOST-FREE ZONE CROP ROTATION FARM HYGIENE Stop movement Control volunteer Select non-host of contaminated host plants and rotation or cover soil, water, plants weeds crops and equipment PLANTING PREPARATION CROP **NO RESIDUE** SOIL SELECTION **SOLARISATION** AT PLANTING Cover soil with a Choose a tarp and kill Ensure no plant resistant/less harmful pathogens residues from host susceptible cultivar crops at planting

HOST RANGE

Very wide with over 2000 plant species acting as hosts to root-knot nematode

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER SCLEROTINIA ROT (WHITE MOULD) Sclerotinia sclerotiorum | Sclerotinia minor

WHAT SHOULD I LOOK FOR?

Symptoms begin as water-soaked lesions which eventually rot and collapse. As the disease progresses characteristic white fluffy growth develops followed by black fruiting bodies (sclerotia) *M. Gammelgaard, Plantesygdomme*

Survival structures (sclerotia) can be up to 25mm long in *S. sclerotiorum* and much smaller (up to 3mm long) in *S. minor M. Gammelgaard, Plantesygdomme*

HOST RANGE

Very wide (more than 400 different plant species). Infects most vegetable crops including all brassicas and many broadleaf weeds e.g. shepherd's purse, thistles, mustard, pigweed

• Consult APVMA or InfoPest website for current registered products

PUMPKIN, SQUASH, ZUCCHINI AND CUCUMBER SCLEROTIUM ROT Sclerotium rolfsii

WHAT SHOULD I LOOK FOR?

Watery rot that eventually leads to collapse of infected area. Characteristic white "ropey" fungal growth develops along with light brown survival structures (sclerotia) *L. Tesoriero, Crop Doc Consulting*

Sclerotia may develop on the infected tissue or soil surface and resemble mustard seeds *G.Holmes, California Polytechnic State University, Bugwood.org*

HOST RANGE

Very wide (more than 400 different plant species). Infects most vegetable crops including the bean, cabbage and pumpkin families

SPINACH, SILVERBEET AND BEETROOT

Aphanomyces root rot/damping off	Beet cyst nematode	Cercospora leaf spot
Page 244	Page 248	Page 252

SPINACH, SILVERBEET AND BEETROOT APHANOMYCES ROOT ROT/DAMPING OFF Aphanomyces cochlioides

WHAT SHOULD I LOOK FOR?

Patches of wilting or dead seedlings with blackened stems near ground level. Cotyledons rarely wilt before the seedling dies, which helps distinguish it from symptoms caused by *Pythium* or *Rhizoctonia* spp. *Mariusz Sobieski, Bugwood.org*

Lesions can appear anywhere on roots that (a) begin as water-soaked and later become dark and dry. If the disease progresses in beets (b) the lesion may penetrate further into the root *R. Harveson, University of Nebraska*

HOST RANGE

Silverbeet, beetroot, spinach as well as related weeds such as fat hen & goose foot

SPINACH, SILVERBEET AND BEETROOT BEET CYST NEMATODE Heterodera schachtii

WHAT SHOULD I LOOK FOR?

Reduced plant stand, stunted growth, yellowing and wilting of aboveground plant, as shown in silverbeet L. Tesoriero, Crop Doc Consulting

Increase in finer "whisker-like" roots with small white spherical cysts. Root vegetables may also develop lumps or swellings Mactode Publications, Bugwood.org

HOST RANGE

Silverbeet, beetroot, rhubarb and brassicas

 Not always effective as cysts can be difficult to penetrate. Check APVMA or Infopest website for registered products

SPINACH, SILVERBEET AND BEETROOT CERCOSPORA LEAF SPOT Cercospora beticola

WHAT SHOULD I LOOK FOR?

Numerous circular leaf spots (1-5mm diameter) with a pale brown centre and a red margin Yonghao Li, The Connecticut Agricultural Experiment Station, Bugwood.org

Fungal growth and small black survival structures (conidia) may be seen at the centre of older spots Bruce Watt, University of Maine, Bugwood.org

HOST RANGE

Silverbeet, beetroot and chard

SPINACH, SILVERBEET AND BEETROOT

DAMPING OFF, ROOT ROT OR VASCULAR WILT Pythium aphanidermatum | Pythium ultimum | Pythium irregulare | Rhizoctonia solani

WHAT SHOULD I LOOK FOR?

Plants will not germinate or will emerge with poor growth, leading to bare patches *D. Lucas, RMCG*

Seedlings that do emerge may have yellow to light brown discolouration on stem at ground level. As the disease progresses stem eventually collapses leading to wilting and death *s. Grigg, Ag-Hort Consulting*

HOST RANGE

Silverbeet, chard, beetroot and spinach. Pythium spp. and Rhizoctonia spp. have a wide

host range, while Fusarium oxysporum f. sp. spinaciae is specific to spinach

SPINACH, SILVERBEET AND BEETROOT ROOT-KNOT NEMATODE

WARM-CLIMATE SPECIES: Meloidogyne incognita | Meloidogyne javanica | Meloidogyne arenaria

WHAT SHOULD I LOOK FOR?

Aboveground plants may appear chlorotic and stunted. Belowground, roots develop
characteristic swelling and galls.G. Holmes, California Polytechnic State University, Bugwood.org

COOL-CLIMATE SPECIES: Meloidogyne hapla | Meloidogyne fallax

Swelling and galls on roots of beetroot caused by root-knot nematodes. *G. Holmes, California Polytechnic State University, Bugwood.org*

PLANTING PREPARATION

HOST RANGE

Very wide with over 2000 plant species acting as hosts to root-knot nematode

 Check APVMA or InfoPest website for current registered products

• Consider growth of biofumigant crops such as arugula (*Eruca sativa*) <u>cv</u>. Nemat

Conduct a pre-sowing soil test to help predict level of risk

• Consider pre-plant soil testing. If numbers are high consider fallow or non-host break crop

• Select planting date to maximise growth in cool conditions when nematode activity is reduced. Bring forward harvest to minimise damage in high risk situations

SPRING ONIONS AND LEEKS

Pink root	Stem and bulb nematode	White rot
Page 278	Page 282	Page 286

WHAT SHOULD I LOOK FOR?

Seeds may not germinate or plants may rot soon after emergence leading to large bare patches. Seedlings that do emerge may have yellow to light brown discolouration around base of the stem. As the disease progresses stem eventually collapses leading to wilting and death *H. Schwartz, Colorado State University, Bugwood.org*

Significant stunting of root systems may also be evident, as shown here caused by *Rhizoctonia* spp. *Bill Dean, River Point Farms, Bugwood.org*

HOST RANGE

Very wide host range including all legumes and most vegetable crops

OFF

• Consult APVMA or InfoPest website for current registered products

• Onion most susceptible between flag leaf and first true leaf stage

SPRING ONIONS AND LEEKS FUSARIUM BASAL PLATE ROT, WILT AND CROWN ROT *Fusarium oxysporum f. sp. cepae*

WHAT SHOULD I LOOK FOR?

Leaf yellowing, curling, necrosis at tip leaf blades H. Schwartz, Colorado State University, Bugwood.org

Roots appear dark brown, flattened, transparent and hollow. Infected plants easily uprooted. Bulbs show external and internal watery brown discolouration *H. Schwartz, Colorado State University, Bugwood.org*

HOST RANGE

All members of the onion family

 Consult APVMA or InfoPest website for current registered products

• Calcium supplements may help suppress disease

SPRING ONIONS AND LEEKS LEAF BLIGHT Stemphylium vesicarium | S. botryosum

WHAT SHOULD I LOOK FOR?

Water-soaked lesions on the leaf or stalk that initially are light yellow to brown and developinto olive brown to black. Lesions join sometimes reaching leaf tip. Bulb size can besignificantly reducedG. Holmes, California Polytechnic State University, Bugwood.org

Older lesions develop distinct concentric rings G. Holmes, California Polytechnic State University, Bugwood.org

MAY BE CONFUSED WITH

Downy mildew infection or often follows downy mildew infection

HOST RANGE

Members of the onion family and asparagus

WHAT SHOULD I LOOK FOR?

Basal plate grey to brown, white to pink fungal growth develops on roots. Bulb size may be reduced *H. Schwartz, Colorado State University, Bugwood.org*

Wilt white, yellow or brown dieback leaves starting from tips. Leaf number and sizereduced. Death may occur over several weeksEd Kurtz, Bugwood.org

HOST RANGE

Mostly members of the onion family, but can be hosted by members of the pumpkin, bean, carrot and pepper families

SPRING ONIONS AND LEEKS STEM AND BULB NEMATODE Ditylenchus dipsaci

WHAT SHOULD I LOOK FOR?

Twisted and malformed leaves, slightly raised pimple-like spots may be present. Severely infected plants eventually turn yellow and die *A. Brozova, Shutterstock*

The base of infected seedlings or bulbs of older plants may appear swollen and split. Infected bulbs are also very susceptible to secondary infections by bacteria and fungi *Ed Kurtz, Bugwood.org*

HOST RANGE

Mostly devastating to the onion family but can be hosted by members of the carrot and bean families

SOIL TEST

Conduct a pre-sowing soil test to help predict level of risk

 Consider planting a resistant trap crop i.e. nematodes can infect roots but unable to develop through to reproductive phase

 Consult APVMA or InfoPest website for current registered products

WHAT SHOULD I LOOK FOR?

Initially yellowing and dieback of leaf tip which eventually leads to wilting. *L. Tesoriero, Crop Doc Consulting*

Soft rot of roots at base of stalk may also be seen. As the disease progresses, white fluffy fungal growth and tiny survival structures (sclerotia) appear. *L. Tesoriero, Crop Doc Consulting*

HOST RANGE

Members of the onion family

• Consult APVMA or InfoPest website for current registered products

SWEET CORN

Fusarium cob rot	Head smut
Page 300	Page 304

Formation of large pale green to silvery galls on cob up to 150mm *W. Upham, Kansas State University, Bugwood.org*

Over time galls become dark and eventually burst releasing black spores *L. Tesoriero, NSW DPI*

Can cause seed rot, in which case seedling will fail to germinate leading to bare patches. *A. Roberston, Iowa State University, Extension and Outreach*

Seedlings that do emerge may have yellow to light brown discolouration around stem at ground level. As the disease progresses, stem eventually collapses leading to wilting and death *W. Brown Jr., Bugwood.org*

Symptoms appearing post emergence may also include severe stunting as shown in plants on the left compared to a healthy plant on the far right.

J, Thomsen, Iowa State University, Extension and Outreach

White streaks start from tips of individual kernels then spread out in a "starburst" pattern. *Ontario Ministry of Agriculture, Food and Rural Affairs*

Advanced fungal growth may appear white, pink or salmon coloured. Dangerous toxins are released from infected cobs and corn is not suitable for human consumption.

Grow a biofumigant crop

• Avoid ammonium fertilisers. Nitrate fertilisers can help suppress disease

Infection occurs during early vegetative stage. Symptoms appear at flowering/cob formation. Tassel symptoms include distortion and formation of masses of black spores *R. Croissant, Bugwood.org*

Cobs may also be replaced by a mass of black spores with a stringy appearance and often in a tear-drop shape Agriculture and Agri-Food Canada, Agriculture and Agri-Food Canada, Bugwood.org

